When you click on links to various merchants on this site and make a purchase, this can result in this site earning a commission. Affiliate programs and affiliations include, but are not limited to, the eBay Partner Network.
Whsmith.co.uk

O'Reilly Media Practicing Trustworthy Machine Learning : Consistent, Transparent, And Fair Ai Pipelines

Whsmith.co.uk

O'Reilly Media Practicing Trustworthy Machine Learning : Consistent, Transparent, And Fair Ai Pipelines

With the increasing use of AI in high-stakes domains such as medicine, law, and defense, organizations spend a lot of time and money to make ML models trustworthy.Many books on the subject offer deep dives into theories and concepts.This guide provides a practical starting point to help development teams produce models that are secure, more robust, less biased, and more explainable. Authors Yada Pruksachatkun, Matthew McAteer, and Subhabrata Majumdar translate best practices in the academic literature for curating datasets and building models into a blueprint for building industry-grade trusted ML systems.With this book, engineers and data scientists will gain a much-needed foundation for releasing trustworthy ML applications into a noisy, messy, and often hostile world. You'll learn:Methods to explain ML models and their outputs to stakeholdersHow to recognize and fix fairness concerns and privacy leaks in an ML pipelineHow to develop ML systems that are robust and secure against malicious attacksImportant systemic considerations, like how to manage trust debt and which ML obstacles require human intervention

from £58.87
Seller: Whsmith.co.uk

Latest products

By Continuing to use this site you confirm, your consent to us and our partners collecting data from you, using cookies to serve personalised ads, tailoring content to you and optimising the site itself. You can learn more about the collection and use of your data and to change your preferences at any time by seeing our Privacy Policy and Cookie Policy.
Accept